Name:

For each of the following five questions, four possible answers are provided, but <u>only one</u> of them is correct: write the corresponding letter in the box! (Recall: injective = one-to-one; surjective = onto.)

- 1] Let $f: S \to T$ be a function. Let s_1 and s_2 be elements of S such that $s_1 = s_2$. What do we need to know about f to conclude that $f(s_1) = f(s_2)$?
 - A] Nothing: this is true for all functions f.
 - B] We need f to be injective.
 - C] We need f to be surjective.
 - D] We need f to be bijective.

2] Let $f: S \to T$ be a function. Let s_1 and s_2 be elements of S such that $f(s_1) = f(s_2)$. What do we need to know about f to conclude that $s_1 = s_2$?

- A] Nothing: this is true for all functions f.
- B] We need f to be injective.
- C] We need f to be surjective.
- D] We need f to be bijective.

3] Let $f: S \to T$ be a function. Let t be an element of T. What do we need to know about f to conclude that t = f(s) for some $s \in S$?

- A] Nothing: this is true for all functions f.
- B] We need f to be injective.
- C] We need f to be surjective.
- D] We need f to be bijective.

4] Let $f: S \to T$ be a function. Let t be an element of T.

What do we need to know about f to conclude that t = f(s) for one unique $s \in S$?

- A] Nothing: this is true for all functions f.
- B] We need f to be injective.
- C] We need f to be surjective.
- D] We need f to be bijective.

5] Let $f: S \to T$ be a function. Let s be an element of S.

What do we need to know about f to conclude that f(s) = t for one unique $t \in T$?

- A] Nothing: this is true for all functions f.
- B] We need f to be injective.
- C] We need f to be surjective.
- D] We need f to be bijective.