Name: \qquad

For each of the following five questions, four possible answers are provided, but only one of them is correct: write the corresponding letter in the box! (Recall: injective $=$ one-to-one; surjective $=$ onto.)

1] Let $f: S \rightarrow T$ be a function. Let s_{1} and s_{2} be elements of S such that $s_{1}=s_{2}$.
What do we need to know about f to conclude that $f\left(s_{1}\right)=f\left(s_{2}\right)$? \qquad
A] Nothing: this is true for all functions f.
B] We need f to be injective.
C] We need f to be surjective.
D] We need f to be bijective.

2] Let $f: S \rightarrow T$ be a function. Let s_{1} and s_{2} be elements of S such that $f\left(s_{1}\right)=f\left(s_{2}\right)$.
What do we need to know about f to conclude that $s_{1}=s_{2}$? $\ldots \ldots . \square$
A] Nothing: this is true for all functions f.
B] We need f to be injective.
C] We need f to be surjective.
D] We need f to be bijective.

3] Let $f: S \rightarrow T$ be a function. Let t be an element of T.
What do we need to know about f to conclude that $t=f(s)$ for some $s \in S$?

A] Nothing: this is true for all functions f.
B] We need f to be injective.
C] We need f to be surjective.
D] We need f to be bijective.

4] Let $f: S \rightarrow T$ be a function. Let t be an element of T.
What do we need to know about f to conclude that $t=f(s)$ for one unique $s \in S$? \square
A] Nothing: this is true for all functions f.
B] We need f to be injective.
C] We need f to be surjective.
D] We need f to be bijective.

5] Let $f: S \rightarrow T$ be a function. Let s be an element of S.
What do we need to know about f to conclude that $f(s)=t$ for one unique $t \in T$? \square
A] Nothing: this is true for all functions f.
B] We need f to be injective.
C] We need f to be surjective.
D] We need f to be bijective.

